
通用游戏服务器框架设计
 
应对高并发场景的有状态服务动态扩缩容解决方案

钱斌海

Funplus技术中台
游戏服务器技术专家



目  录

游戏服务器架构演进 01

Phonest通用服务器框架 02

Phonest微服务体系 03

有状态服务动态扩缩容 04



游戏服务器架构演进
第一部分



游戏服务器开发简介

01. 游戏服务器架构演进

游戏服务器研发包含哪
些内容？

SLG、MMO、MOBA、
FPS … …

以上游戏图片素材均来源于线上图库，这里仅用来举例丰富的游戏内容，并无特殊指代



游戏服务器开发简介

01. 游戏服务器架构演进

 服务器引擎

• 网络库、RPC框架、编程范式 (Actor模型、基于Lua实现继承体系) 规约上层业务开发

 核心玩法

• 通过复杂的战斗，验证游戏可玩性

 外围系统

• 好友、聊天、工会，丰富游戏生态

 工具链

• Stress Test、CPU Profile、Opentracing、Prometheus、Chaos Engineering

稳定的服务器引擎、丰富的外围系统设计、工具链的准备，最终都是为了呈现一个好的核心玩法
而且整个服务器的架构，为了适配不同类型的核心玩法，也会不断地迭代和演进



游戏服务器开发简介

01. 游戏服务器架构演进

 分区服的设计

 核心玩法

• 地图探索、任务

• 团队副本 PVE

• 玩家对战 PVP

以上游戏图片素材均来源于线上图库，这里仅用来举例，并无特殊指代



分区服游戏服务器框架

01. 游戏服务器架构演进

 区服的负载容易评估

 通过单点Center简化分布式逻辑

 开新服承载新增玩家

 区服隔离，单服资源有限，玩法受限

 玩家在线期间，服务器一直存在一个实体，能实时响应玩家操作，也可以称为玩家的内存状态

TCP长连接



分区服和跨服的架构演进

01. 游戏服务器架构演进

… 
…

跨服公共服务器

1区

2区

 丰富游戏可玩性，在单服的玩法上，扩展出跨服玩法，比如跨服竞技场、排行榜

降低网络延时



全服的游戏服务器架构

01. 游戏服务器架构演进

 全服设计

 核心玩法

• 5V5公平竞技

• 1V4非对称竞技

以上游戏图片素材均来源于线上图库，这里仅用来举例，并无特殊指代

组队 => 匹配 => 进战斗

大DAU => 同时在线人数达百万 => 分布式、负载均衡



全服的游戏服务器架构

01. 游戏服务器架构演进

 单点设计成为系统瓶颈，分布式多节点

 外围系统封装成微服务

• 独立部署和扩缩容

• 类似插件，即插即用



Phonest通用服务器框架
第二部分



Phonest通用服务器框架

02. Phonest通用服务器框架

Game：承载核心玩法

Gate：客户端连接

DBProxy: Mongodb/Redis

ClusterMgr: 集群管控

Hub：跨Cluster转发RPC



Phonest通用服务器框架

02. Phonest通用服务器框架

Entity Mailbox
• ClusterId
• GameId
• EntityId

通信模式基于Actor模型实现



Phonest实现分区服

02. Phonest通用服务器框架

Cluster的进程均衡部署在两台物理机上

 对于分区服的游戏而言

• 单个Cluster就是一个区服

• 单个Cluster可以部署在多台

物理机上

 多个Game进程可以部署不同的业务逻辑

• Game0部署登录Center

• Game1部署好友和聊天Center

• Game2和Game3部署核心玩法



Phonest实现全服

02. Phonest通用服务器框架

 对于全服架构，可以部署成一个大型Cluster，也可以分拆成多个Cluster去承载

 以Cluster为粒度，通过类型配置，部署不同的功能模块，同一类型的Cluster负载均衡

战斗外逻辑，好友、商城

以战场资源池的方式承载战斗逻辑

观战功能该怎么实现呢？



Phonest实现全服 -- 观战

02. Phonest通用服务器框架

• 扩展一个Watch类型的Cluster

• 隔离观战逻辑和战斗逻辑

• 一场战斗的RPC可以转发给多个观战集群



Phonest微服务体系
第三部分



Phonest MicroService

03. Phonest微服务体系

SDK  异构混合部署

• 比特流封包解包

• Protobuf协议

基于Golang自主开发，结构简单，

主要包括微服务网关和微服务节点



Phonest MicroService

03. Phonest微服务体系

 面向用户：提供SDK，快速接入

• 与微服务网关建连接、加密、鉴权

• callService( service,  method,  args,  callback,  hint )

 面向开发者：提供开发框架和工具链，快速开发

• MS_Framework

• Service_Generator  



MS_Framework

03. Phonest微服务体系

 读写 Mongodb & Redis  API 封装

 ETCD 注册和监听的 API 封装

 Opentracing 链路追踪 & Prometheus Metrics  API 封装

 Service Runtime

• one request one goroutine

• work pool



Service_Generator

03. Phonest微服务体系

api.json join.go

微服务代码生成工具，自动生成与框架衔接的代码



有状态服务动态扩缩容
第四部分



四人组队Boss战

04. 有状态服务动态扩缩容

玩法描述：四个玩家组成一个队伍，然后联合镇压一个Boss

• TeamService –- 处理组队逻辑

• BossService –- 处理Boss战的逻辑

架构设计上需要考虑：

• 动态扩缩容 –- 根据负载情况自动调整系统的资源分配

• 有状态 –- 以离散的方式模拟一个连续的世界，timer update

• 低延时 –- 强竞技的游戏，客户端60帧，16ms update



四人组队

04. 有状态服务动态扩缩容

测试截图，不代表游戏最终品质

能否用无状态的方式实现组队服务呢？  需求简单、非高频、延时要求低

玩家创建一个队伍，成为队长，其他玩家可以申请加入一起组队，队伍人数有上限



四人组队的无状态实现

04. 有状态服务动态扩缩容

如何减少并发冲突？

并发冲突如何解决？

微服务节点内存无状态，状态数据保存在Redis



四人组队的无状态实现 – 串行化

04. 有状态服务动态扩缩容

 网关采用一致性哈希路由，根据teamId把微服务请求转发给同一个TeamService

 TeamService也根据teamId把微服务请求投递给同一个goroutine

还需要乐观锁么？



无状态实现的困境

04. 有状态服务动态扩缩容

 组队添加超时逻辑该如何实现？检测超时的驱动源又在哪里？

 游戏业务要求低延时，无状态的实现引入的序列化和反序列化会显著增加延时

四人组队打Boss，Boss血量共享，
客户端上传对Boss的伤害，服务
器结算后广播

客户端60帧 => 极限情况下每个玩
家每秒请求60次Redis

战场数据高频序列化和反序列化

叠加高频的Redis乐观锁冲突
测试截图，不代表游戏最终品质



有状态服务动态扩缩容 -- 难点

04. 有状态服务动态扩缩容

 节点扩缩容后，负载如何再均衡？节点自治还是引入第三方控制节点？

 容灾，网络丢包、进程Crash，各个节点的最终一致性如何达到？

 对业务开发能否透明？ 业务逻辑、性能指标都不受影响



Seech架构图

04. 有状态服务动态扩缩容

 整体设计参考Mongodb分片集群

 Router是路由节点，类似Mongos

 Shard是Service进程，类似Mongod

 ConfigServer是管控节点，主备高可用



Seech架构图

04. 有状态服务动态扩缩容

• Chunk是一个逻辑概念，有唯一编号，总数固定，不可拆分或者合并
• 单个Chunk只属于单个Shard，不会同时在多个Shard上提供服务
• Chunk基于Hash规则，管理了一部分数据，并负责这部分数据的迁移

• 简化主备方案
• 单节点部署
• 状态数据落地数据库



Seech架构图

04. 有状态服务动态扩缩容

 Router作为微服务网关的路由模块

 Shard作为有状态Service的逻辑载体

 ConfigServer  AutoBalance



Seech示例 -- 初始化

04. 有状态服务动态扩缩容

Router

Hash(battleId) % ChunkNum  =>  ChunkId

6 Chunks   2Shards

Config Server Mongo

Old Config

New Config

Stable Version

Config

Shard 0 Shard 1

Chunk 5

Chunk 0

Chunk 2

Chunk 1 Chunk 4Chunk 3



Seech动态扩缩容

04. 有状态服务动态扩缩容

 目标：通过AutoBalance实现Chunks在Shards上均衡分布

 权衡：考虑调节均衡的过程尽量不影响业务性能

• 参考GC过程，把一次扩缩容分成多个Step  

• 一个Step就是一次调节均衡的过程，也就是从OldConfig调整成NewConfig的过程

• 控制OldConfig和NewConfig的差异，差异越大，表明这个Step迁移的数据越多

 如何合理规划一个Step的大小？

• 控制每个Shard往外迁移的Chunk数量

• 每个Shard每个Step最多往外迁移一个Chunk



Shard 2

Seech示例 -- 节点扩容

04. 有状态服务动态扩缩容

6 Chunks，From 2 Shards To 3 Shards

Router

Shard 0 Shard 1

Chunk 5

Chunk 0

Chunk 2

Chunk 1 Chunk 4Chunk 3

Config Server Mongo

Old Config

New Config

Stable Version



Seech示例 -- 节点缩容

04. 有状态服务动态扩缩容

6 Chunks，From 3 Shards To 2 Shards  Step_1 

Router

Config Server Mongo

Old Config

New Config

Stable Version

Shard 2Shard 0 Shard 1
Chunk 5Chunk 0 Chunk 2Chunk 1 Chunk 4Chunk 3



Seech示例 -- 节点缩容

04. 有状态服务动态扩缩容

6 Chunks，From 3 Shards To 2 Shards  Step_2 

Router

Shard 2Shard 0 Shard 1
Chunk 5Chunk 0

Chunk 2

Chunk 1 Chunk 4Chunk 3



Seech容灾

04. 有状态服务动态扩缩容

 一个Step就是一次事务：所有Shard的配置都从OldConfig更新为NewConfig

 完成标志：ConfigServer更新完Mongodb的StableVersion

 事务需要回滚吗？
• 不回滚，比如扩节点，立马又缩节点，当成两次事务来处理。

 如何保证事务一定能完成？ 
• 无限重试，Step各个阶段都是可重入的



AckAckAckAck

Seech容灾 – ConfigServer丢包

04. 有状态服务动态扩缩容

Shard 0
Shard 1
Shard 2

Config Server Mongo

Old Config

New Config

Stable Version
ConfigConfigConfig

Shard 2Shard 0
Chunk 0 Chunk 1

Shard 1
Chunk 4Chunk 3

Config

Chunk 2

Chunk 5

 以缩容Shard2的Step_2为例，假设Shard2的Ack发生丢包



Seech容灾 – ConfigServer Crash

04. 有状态服务动态扩缩容

Shard 0
Shard 1
Shard 2

Config Server Mongo

Old Config

New Config

Stable Version

Config

NewConfig.Version != StableVersion

ConfigConfigConfig

Shard 2Shard 0
Chunk 5Chunk 0

Chunk 2

Chunk 1

Shard 1
Chunk 4Chunk 3

 假设ConfigServer在等待Shard2的Ack过程中，发生了Crash



Seech容灾 – Shard丢包

04. 有状态服务动态扩缩容

Shard 0
Shard 1
Shard 2

Config Server Mongo

Old Config

New Config

Stable Version
ConfigConfigConfig

Shard 2Shard 0
Chunk 0

Chunk 2

Chunk 1

Shard 1
Chunk 4Chunk 3

Shard1.Version < Shard2.Version

Chunk 5

 假设Shard1没有收到ConfigServer下发的配置

Config



Seech容灾 – Shard Crash

04. 有状态服务动态扩缩容

Shard 0
Shard 1
Shard 2

Config Server Mongo

Old Config

New Config

Stable Version
Config

Shard 2Shard 0
Chunk 0 Chunk 1

Shard 1
Chunk 4Chunk 3

Chunk 2

StableVersion != NewConfig.Version
根据OldConfig，重新创建Chunk3和Chunk4
等待Shard2迁移Chunk5

Chunk 5

Chunk 5

Shard2在所有Chunk都
迁移完后能否直接下线？

Shard Crash
ConfigServer Crash

 假设Shard1在收到Shard2迁移的Chunk5后立即发生了Crash



Seech逻辑完备性的验证

04. 有状态服务动态扩缩容

 Seech框架的分布式事务相对复杂，那如何保证逻辑的完备性呢？

 基于TLA+，验证Seech的分布式事务能否达成最终一致性

• Paxos作者提出的模拟并发系统行为的逻辑框架

• 主要思想是将系统的行为描述成状态机，通过时序编排来穷举状态之间的转换是否符合预期

• 验证的过程，就是通过TLA+提供的描述语言，复刻出整个框架的状态机并执行



Boss战的有状态实现

04. 有状态服务动态扩缩容

 BossService

• BossChunk

• Battle

通过接口约束，衔接Seech框架和上层业务



Thanks


