
如何用Go模拟CPU

蒙卓

华为 – 2012实验室
工程师

成为盘古？

让这个世界里面的人（程序）无法察觉
这个世界是创造出来的

目录

• 计算机的演化历史 – 硬件计算到冯诺伊曼架构

• 构建虚拟世界 – MOS 6502

• 控制单元（control unit）

• 运算逻辑单元（arithmetic logic unit）

• 6502汇编器与链接器

• 未来目标

1970年程序员
CPU 80KHz 单核

内存 64KB 手编磁芯

老娘把你送上月球

2021年程序员
CPU 2,400,000KHz 4核
内存 8,000,000KB DDR3

呜呜
App内存不足
外卖下不了单

计算机的演化历史

• 一部偷懒的历史

• 硬件“计算机”时代
• 不擅长计算和记忆的人使用工具帮助计算：算盘，计算尺，手摇计算器
• 硬件计算机改进支持的算法，需要变更或重新发明整个硬件，比如让算
盘支持对数

计算机的演化历史

• 改硬件太麻烦了，还慢
• 继电器计算机

• 1937年贝尔实验室：model k
• 计算一次复数速度30-40s，手摇计算机15分
钟

• 从织布机来源的灵感，可使用纸片打孔的方
式编写程序（patch的来源）

• 真空管计算机
• 1946年 ENIAC，由于减少了继电器的机械装
置速度更快，但寿命短。

• 因为真空管会发光，吸引飞蛾（bug的来源）

• 集成电路计算机
• 1947年 贝尔实验室：晶体管诞生，现代计算
机开始得以应用

本人摄于哈佛计算机学院

计算机的演化历史

• 因为改纸带比较麻烦

• 冯诺伊曼架构
• 又称存储程序型计算机
• 可在运行时改变指令
• 指令控制指令和数据

计算机的演化历史

• 因为改纸带比较麻烦

• 冯诺伊曼架构
• 又称存储程序型计算机
• 可在运行时改变指令
• 指令控制指令和数据
• 用啥实现他老人家可没说

本人摄于MIT CSAI Lab

计算机的演化历史

• 冯诺伊曼架构

草稿纸

在计算
的你

算盘

计算机的演化历史

• 小结
• 所有发明都是有基础的
• 任何的方便都是有代价的：抽象层概念
• 抽象意味着更慢

• 为啥现在程序员好像更弱了？

• 因为我们处在最好也是最坏的时代
• 抽象多且环环嵌套
• 硬件过于复杂
• 软件基于操作系统等复杂概念
• 真的快且便宜

Go模拟CPU

• 如何用Go实现冯诺伊曼架构CPU？

• 简单：一个循环+一个大数组

读取当前指令 执行指令 下一条指令

模拟目标 – MOS 6502

• 诞生于1975年

• MOS 6502应用范围广

• 资料多且易获得

• 简单、容易实现的现代CPU

MOS 6502简介

• 8位，变长ISA（CISC）

• 中断（NMI，IRQ）

• 寄存器
• 1个累加寄存器（Accumulator）
• 2个地址索引寄存器（X，Y）
• 1个状态寄存器（PS）
• 1个16位程序指针寄存器（PC）
• 1个栈寄存器（SP）

Go模拟内存

• 内存空间 [65536]Byte

• 每个块是一个page （256Byte）

ZeroPage Stack vectors.....

0x00 –
0xFF

0x100 –
0x1FF

0x1FF – 0xFFF9 0xFFFA

Go模拟6502控制单元

• 读取当前指令：16位PC寄存器

• 执行指令
• 指令译码器（读出来的指令是什么）
• 指令执行器（按指令执行）
• 6502支持NOP指令（啥都不做）

Go模拟6502控制单元
• 指令结构（instruction）

• 操作码（valid opcode）
• 寻址模式 （address mode）

• Implied
• Accumulator
• Immediate
• Absolute
• Zeropage, X, Y
• Indirected, X, Y

• 指令长度（instruction length）
• 指令周期（cycle）

• NOP：啥都不做指令
• 操作码：0xEA
• 寻址模式：Implied (默认）
• 指令长度：1
• 指令周期：1

Go模拟6502控制单元
• 不过6502支持的指令：151个

• 偷懒用go generate转化一下
https://www.masswerk.at/6502/6502_instruction_set.html

Go模拟6502控制单元
• 不过6502支持的指令：151个

• html解析器生成对应的指令
https://www.masswerk.at/6502/6502_instruction_set.html

Go模拟6502控制单元
• 指令执行过程：

• 读取指令码（opcode）
• 如果有运算数（operand），则读取
• 根据逻辑执行对应指令
• 让PC根据字长移动，或跳转（Branch）

Go模拟6502控制单元
• 指令执行过程：

• 读取指令码（opcode）
• 如果有运算数（operand），则读取
• 根据逻辑执行对应指令
• 让PC根据字长移动，或跳转

• SP与栈空间、ZeroPage
• SP跟常见的栈指针一样，压栈SP则减掉对应字长
• 栈最大0xFF，咦……stackoverflow？
• ZeroPage因为电路原因，寻址速度比一般指令快

Go模拟6502控制单元
• 指令执行过程：

• 读取指令码（opcode）
• 如果有运算数（operand），则读取
• 根据逻辑执行对应指令
• 让PC根据字长移动，或跳转

• SP与栈空间、ZeroPage
• SP跟常见的栈指针一样，压栈SP则减掉对应字长
• 栈最大0xFF，咦……stackoverflow？
• ZeroPage因为电路原因，寻址速度比一般指令快

• 中断与向量
• IRQ = 可忽略的中断 = 水平触发 = 读取0xFFFC里的绝对地址
• NMI = 不可忽略的中断 = 上沿触发 = 读取0xFFFE里的绝对地址
• Reset = 重置 = 读取0xFFFA 里的地址

Go模拟6502控制单元

总共100行左右

Go模拟6502计算单元
• 指令类型：

• Uint8 加减运算
• Uint8 位（布尔）运算

• 影响PS（运行状态寄存器）

Go模拟6502计算单元
• 指令类型：

• Uint8 加减运算
• Uint8 位（布尔）运算

• 影响PS（运行状态寄存器）

• ADC：带进位加法

• A = A+运算数（operand）+Carry

• 如果溢出则PS |= FlagCarry

Go模拟6502计算单元
• 指令类型：

• Uint8 加减运算
• Uint8 位（布尔）运算

• 影响PS（运行状态寄存器）

• 加法指令
• 也就30行
• 还兼容减法（省电路又省钱）

Go模拟6502
• 小结

• 冯诺伊曼架构 约等于 有限状态机
• 用Go实现全部合法指令并测试通过也就1000行左右

Go模拟6502
• 小结

• 冯诺伊曼架构 约等于 有限状态机
• 用Go实现全部合法指令并测试通过也就1000行左右

说了这么多CPU
那电脑咋工作的？

Go模拟Apple II
• Apple II 规格

• CPU （MOS 6502）
• 内存（64KiB）
• 显示（LoRes 40x24）
• 显示（280×192像素）
• 输入（内置键盘）
• 存储（磁带/5.25英寸）

• 早期内存非常昂贵
• 4KiB = 5,543 USD (2020)
• 64KiB = 11,266 USD (2020)
• 这么看现在的厨子是不是超良心

Go模拟Apple II
• 模拟Apple II 规格

• CPU （MOS 6502）
• 内存（64KiB）
• 显示（LoRes 40x24）
• 输入（内置键盘）
• 存储（磁带/5.25英寸）

• 早期内存非常昂贵
• 4KiB = 5,543 USD (2020)
• 64KiB = 11,266 USD (2020)
• 这么看现在的厨子是不是超良心
• 真果粉应该搞一套Apple II

Go模拟Apple II
• 又双叒叕是一个大循环

• Reset -> 启动检查程序
• 检查完成把电脑规格写入内存指定区域
• 一直循环monitor 函数
• 直到有NMI/IRQ中断

• 还是不懂……
• 就来个键盘敲下，到显示的全流程？

Go模拟Apple II

按下键盘
硬件触发IRQ

键值写入0xC000

读取0xC000

并unmask

再读取0xC010

硬件终止中断

存入

当前光标处

Go模拟Apple II

光标处0x400

直通显卡

通过硬件转码变
成屏幕字符

刷新屏幕
等下次屏幕刷新

你就看见了

Go模拟Apple II

Go模拟Apple II
• ZHUOS = Zhuo’s Hardly Usable Operating System for fun
• 小结

• 早期电脑都是直接读写内存/硬件
• 操作系统仅仅是帮助处理IO

• 进程？不存在的
• 用户？不存在的
• 虚拟内存？不存在的
• 都是用汇编编写程序

Go模拟Apple II
• ZHUOS = Zhuo’s Hardly Usable Operating System for fun
• 小结

• 早期电脑都是直接读写内存/硬件
• 操作系统仅仅是帮助处理IO

• 进程？不存在的
• 用户？不存在的
• 虚拟内存？不存在的

你说汇编？
可GCC 不支持6502啊

Go 编写汇编器

• 破除迷信

• Rob Pike：The assembler is just doing text processing

https://www.youtube.com/watch?v=KINIAgRpkDA

Go 编写汇编器

• 如何开始？
• http://www.appleoldies.ca/anix/

• 先读读前人的工作

• 然后用Go实现！

Go 编写汇编器等工具

• 用Go编写的汇编器编写ZHUOS
• Tokenizer + Parser（可以参加比赛）
• 解析语句
• 几乎不用的就直接不实现
• 大概2000行左右就输出obj（json）

• 实现链接器
• 最头疼的是指令地址确定

• 想debug方便还得
• 实现objdump （检查指令和地址）
• 实现nm（named map，检查链接）

Go 编写汇编器等工具

Go 编写汇编器

未来计划

• 让Go能跑在6502上（10%）
• 已经能输出部分语句
• 语法上除了直接操作指针之外跟C没区别
• Runtime/map/atomic/channel/goroutine没戏

• 说白了，the compiler is just doing text processing

Thanks and Happy
Hacking

