
Golang⼤规模云原⽣应⽤管理实践
刘洋（炎寻）

关于我

•毕业于中国科学技术大学，定居杭州

•就职于阿里云-云原生应用平台团队

• Problem Solver，聚焦中间件，容器，Kubernetes，PaaS平台…

• OAM社区成员

开局一张图
规模化应用交付效率对比去年

每万笔峰值交易的IT成本对比4年前

提升1倍

下降80%

云原生
技术

稳定

成本效率

云原生-程序员视角

基础设施

K8s

云原生生态（CNCF）

云原生应用

云原生是以容器技术为基础围绕着Kubernetes进行的一场技术标准化演进。通过标准可扩展的调度，网络，
存储，容器运行时接口来提供基础设施；通过标准可扩展的声明式资源和控制器来提供运维能力。两层标
准化推进了细化的社会分工，各领域进一步提升规模化和专业化，全面达到成本，效率，稳定性的优化。

4 6 7

2 3 51

1 Kubectl plugins

2 Apiserver extension

3

4

5

6

7

Custom resources

Scheduler extension

Custom controller

Network plugins

Storage plugins

统筹规划，
降低成本

自动化运维，
提升稳定性

非业务逻辑剥离，
提升交付效率

Golang与云原生生态（CNCF）

项目数占比: 214/1512（14.2%） Github star数占比:1265737 / 2458072（51.5%）市值占比: $8.08T/$19.46T(41.5%)

https://landscape.cncf.io/format=card-mode&
fullscreen=yes&grouping=no&language=Go

截止
2020.11.15

https://landscape.cncf.io/format=card-mode&

插入：策略（Policy）与机制（Mechanism）

策略是做事的一组概念和计
划，关注要做什么事

“what”

机制是获取结果的过程，
方法和系统，关注如何做事

“how”

• 员工进入公司需要验证是一个策略，人脸识别是机制；

• 从杭州到上海是策略，坐火车是机制；

• 接口是策略，实现是机制；
• 声明是策略，过程是机制；

• 策略面向外部交互，机制面向内部实现；

• 策略追求开放标准，机制追求稳定可复用；

• 策略与机制要分离；
• 策略与机制随着层次的变化而变化；

应用管理的策略与机制

应用

版本
工作负载

负载均衡

标签 流量

组件

日志指标

容量

服务

依赖 路由规则

持久卷

部署策略

健康检查

…

灰度
发布

定时弹性

事件

指标弹性

分批发布

重启

回滚

日志管理

事件中心

指标监控
存储挂载

服务绑定

手动弹性

回退历史
负载均衡

报警 诊断

组件管理
服务治理

…

权限

K8sIstio

Envoy

Tekton

Argo

KEDA

ES

InfluxDB

Promethues
Knative

Ingress

Rook

Kube
eventer

…

策略

机制

Jaeger

实例

调度策略

链路

K8s及云原生生态给
开发者提供的是机制

开发者直接使用K8s的失败故事
• 认知成本高：K8s功能强大却没有统一的使用方式，不得不学习复杂的声明字段和各种奇怪的Annotation；
• 稳定性不足：没有设置Pod的QoS等级，导致频繁被驱逐，没有设置反亲和性策略，导致节点流量不均;

• 扩展效率低：需要负责安装，升级丰富的云原生插件，无法解决插件的依赖，冲突和资源浪费问题；

• 运维成本高：Apiserver, etcd, Controller-Manager, Kubelet,等组件都具有一定复杂度，无法做到定期升
级以维持安全，高可用，高性能的状态；

• …

能力复用 自动化 可观测稳定 安全

开发者真正想要的是策略：大象无形的基础设施，坚如磐石的中间件，丰富高效的应用PaaS平台

基础设施

云原生PaaS平台提供应用管理策略

基础设施

K8s

云原生生态（CNCF）

云原生应用

4 6 7

2 3 51

1 Kubectl plugins

2 Apiserver extension

3

4

5

6

7

Custom resources

Scheduler extension

Custom controller

Network plugins

Storage plugins 基础设施

K8s

云原生生态（CNCF）

云原生应用

4 6 7

2 3 51

云原生PaaS平台
8

9

8 9向下设计平台策略与机制融入云原生生态 向上提供应用管理策略与机制使用平台

插入：K8s核心机制-声明式资源与控制器

控制器期望状态

被控制系统

管控动作

监控状态

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

func (dc *DeploymentController) processNextWorkItem() bool {
key, quit := dc.queue.Get()
if quit {

return false
}
defer dc.queue.Done(key)

err := dc.syncHandler(key.(string))
dc.handleErr(err, key)

return true
}

func (dc *DeploymentController) syncDeployment(key string) error {
...
deployment, err := dc.dLister.Deployments(namespace).Get(name)
d := deployment.DeepCopy()

// ༄ັrs
rsList, err := dc.getReplicaSetsForDeployment(d)
if err != nil {

return err
}

ಅํંԭᧆDeploymentጱPodݐ឴ //
podMap, err := dc.getPodMapForDeployment(d, rsList)
if err != nil {

return err
}

// rolloutRollingݎሿဌํ޾Deployment templateӞᛘጱrsտڠୌෛ
ጱ

switch d.Spec.Strategy.Type {
case apps.RecreateDeploymentStrategyType:

return dc.rolloutRecreate(d, rsList, podMap)
case apps.RollingUpdateDeploymentStrategyType:

return dc.rolloutRolling(d, rsList)
}
...

}

• 使用声明式K8s资源
作为期望终态
• 循环控制器
• Label是一等公民
• 事件触发闭环反馈
• 多控制器组合

基于控制论原理

EDAS-阿里云云原生PaaS平台

ApiServer

Kube
Controller manager

Cloud
controller manager

KEDA
controller

Flagger
controller

Prom-
controller

Istio-
controller

…

部署
控制器

弹性
控制器

流量
控制器

存储
控制器

负载均衡
控制器

限流降级
控制器

监控
控制器

…应用模型
控制器

平台应用模型

平台特定业务

用户应用模型

云原生生态

EDAS

1、应用管理策略

2、应用管理机制

3、平台构建策略

4、平台构建机制

PaaS 内核（3，4）

PaaS 业务（2）

用户界面（1）

EDAS的平台构建策略-OAM应用模型

https://github.com/oam-dev/spec

• 应用
• 组件1（工作负载）

• 运维特征1
• 运维特征2
• …

• 组件2 （工作负载）
• 运维特征1
• 运维特征2
• …

• …
作用域

能力定义 依赖编排

组件版本 服务绑定

OAM应用模型
apiVersion: core.oam.dev/v1alpha2
kind: ApplicationConfiguration
metadata:
 name: helloworld
spec:
 components:
 - componentName: web-service
 instanceName: frontend
 dependencies:
 - backend
 traits:
 - trait:
 apiVersion: keda.k8s.io/v1alpha1
 kind: ScaledObject
 spec:
 maxReplicaCount: 4
 triggers:
 - type: redis
 ...
 - trait:
 apiVersion: extended.oam.dev/v1
 kind: Route
 spec:
 traffic:
 ...
 scopes:
 - scope:
 apiVersion: core.oam.dev/v1alpha2
 kind: Network
 name: my-vpc-network-X
 - instanceName: backend
 componentName: redis
 scopes:
 - scope:
 apiVersion: core.oam.dev/v1alpha2
 kind: Network
 name: my-vpc-network-X

apiVersion: core.oam.dev/v1alpha2
kind: Component
metadata:
 name: web-service
 version: v0.3.0
 description: Knative workload
spec:
 workload:
 apiVersion: serving.knative.dev/v1
 kind: Service
 spec:
 template:
 metatdata:
 name: web-service-v1
 spec:
 containerConcurrency: 0
 containers:
 - env:
 - name: TARGET
 value: Knative
 image: helloworld-go:latest

apiVersion: core.oam.dev/v1alpha2
kind: TraitDefinition
metadata:
 name: routes.extended.oam.dev
 annotations:
 version: v0.3.0
spec:
 appliesTo:
 - serving.knative.dev/v1.Service
 definitionRef:
 name: routes.extended.oam.dev

apiVersion: core.oam.dev/v1alpha2
kind: TraitDefinition
metadata:
 name: scaledobjects.keda.k8s.io
 annotations:
 version: v0.3.0
spec:
 appliesTo:
 - serving.knative.dev/v1.Service
 definitionRef:
 name: scaledobjects.keda.k8s.io

能力定义
• 工作负载
• 运维特征
• 作用域

组件 应用配置 =组件+运维特征+作用域

简单开放

标准可扩展

可组合

可发现

https://github.com/oam-dev/spec

EDAS的平台构建机制-KubeVela

https://github.com/oam-dev/kubevela

• OAM应用模型运行时

•内置Workloads & Traits
& Scopes

• Capability Management

KubeVela的核心机制-运行时
func Setup(mgr ctrl.Manager, args controller.Args, l logging.Logger) error {

ŏ
return ctrl.NewControllerManagedBy(mgr).

Named(name).
For(&v1alpha2.ApplicationConfiguration{}).
Watches(&source.Kind{Type: &v1alpha2.Component{}},

&ComponentHandler{
Client: mgr.GetClient(),
Logger: l,
RevisionLimit: args.RevisionLimit,

}).
Complete(NewReconciler(mgr, dm,

WithLogger(l.WithValues("controller", name)),
WithRecorder(event.NewAPIRecorder(mgr.GetEventRecorderFor(name)))))

}

func (r *OAMApplicationReconciler) Reconcile(req reconcile.Request) (result reconcile.Result, returnErr error) {
…
ac := &v1alpha2.ApplicationConfiguration{}
if err := r.client.Get(ctx, req.NamespacedName, ac); err != nil {

return reconcile.Result{}, errors.Wrap(resource.IgnoreNotFound(err), errGetAppConfig)
}
acPatch := ac.DeepCopy()

workloads, depStatus, err := r.components.Render(ctx, ac)
if err := r.workloads.Apply(ctx, ac.Status.Workloads, workloads, resource.MustBeControllableBy(ac.GetUID())); err != nil {

…
}
…
for _, e := range r.gc.Eligible(ac.GetNamespace(), ac.Status.Workloads, workloads) {

e := e
 …

if err := r.client.Delete(ctx, &e); resource.IgnoreNotFound(err) != nil {
…

}
…

}

// patch the final status on the client side, k8s sever can't merge them
r.updateStatus(ctx, ac, acPatch, workloads)

ac.Status.Dependency = v1alpha2.DependencyStatus{}
waitTime := longWait
if len(depStatus.Unsatisfied) != 0 {

waitTime = dependCheckWait
ac.Status.Dependency = *depStatus

}

// the posthook function will do the final status update
return reconcile.Result{RequeueAfter: waitTime}, nil

}

1 获取应用期望状态

控制器初始化
2 解析期望的WTS状态

3 调谐动作-更新与新增

4 调谐动作-删除

5 调谐动作-状态同步

6 异步轮询

func (r *components) Render(ctx context.Context, ac *v1alpha2.ApplicationConfiguration) {
workloads := make([]*Workload, 0, len(ac.Spec.Components))
dag := newDAG()
for _, acc := range ac.Spec.Components {

w, err := r.renderComponent(ctx, acc, ac, dag)
ŏ
workloads = append(workloads, w)

}

ds := &v1alpha2.DependencyStatus{}
res := make([]Workload, 0, len(ac.Spec.Components))
for i, acc := range ac.Spec.Components {

unsatisfied, err := r.handleDependency(ctx, workloads[i], acc, dag, ac)
…
res = append(res, *workloads[i])

}

return res, ds, nil
}

func (r *components) renderComponent(ctx context.Context, …) {
if acc.RevisionName != "" {

acc.ComponentName = ExtractComponentName(acc.RevisionName)
}
c, componentRevisionName, err := util.GetComponent(…)
…
p, err := r.params.Resolve(c.Spec.Parameters, acc.ParameterValues)

w, err := r.workload.Render(c.Spec.Workload.Raw, p...)

for _, ct := range acc.Traits {
t, traitDef, err := r.renderTrait(ctx, ct, ac, acc.ComponentName, ref, dag)
…

}
if err := SetWorkloadInstanceName(traitDefs, w, c); err != nil {

return nil, err
}
…
for i := range acc.Traits {

traitDef := traitDefs[i]
trait := traits[i]
workloadRefPath := traitDef.Spec.WorkloadRefPath
if len(workloadRefPath) != 0 {

…SetValue(workloadRefPath, workloadRef)…
}

}
scopes := make([]unstructured.Unstructured, 0, len(acc.Scopes))
for _, cs := range acc.Scopes {

scopeObject, err := r.renderScope(ctx, cs, ac.GetNamespace())
…
scopes = append(scopes, *scopeObject)

}

addDataOutputsToDAG(dag, acc.DataOutputs, w)

return &Workload{…Workload: w, Traits: traits, RevisionEnabled:
isRevisionEnabled(traitDefs), Scopes: scopes}, nil
}

2.1 渲染workload及其
Traits，scopes

2.2 检查依赖

2.1.1 渲染workload

2.1.2 渲染trait

2.1.3 建立workload与trait的关系

2.1.4 建立workload与scope的关系

2.1.5 初始化依赖

func (a *workloads) Apply(ctx context.Context, status []v1alpha2.WorkloadStatus, w
[]Workload, ao ...resource.ApplyOption) error {

// they are all in the same namespace
var namespace = w[0].Workload.GetNamespace()
for _, wl := range w {

if !wl.HasDep {
err := a.patchingClient.Apply(ctx, wl.Workload, ao...)
ŏ

}
for _, trait := range wl.Traits {

if trait.HasDep {
continue

}
t := trait.Object
if err := a.updatingClient.Apply(ctx, &trait.Object, ao...); err != nil {

return errors.Wrapf(err, errFmtApplyTrait, t.GetAPIVersion(),
t.GetKind(), t.GetName())

}
}
workloadRef := runtimev1alpha1.TypedReference{

APIVersion: wl.Workload.GetAPIVersion(),
Kind: wl.Workload.GetKind(),
Name: wl.Workload.GetName(),

}
for _, s := range wl.Scopes {

if err := a.applyScope(ctx, wl, s, workloadRef); err != nil {
return err

}
}

}

return a.dereferenceScope(ctx, namespace, status, w)
}

3.1 依赖满足，新增或更新workload

3.2 依赖满足，新增或更新trait

3.3 新增或更新workload的scope

3.4 删除workload的scope

EDAS的应用策略与机制
用户应用模型-OAM表单

EDAS

平台业务

apiVersion: core.oam.dev/v1alpha2
kind: ApplicationConfiguration
metadata:
 name: helloworld
spec:
 components:
 - componentName: web-service
 instanceName: frontend
 dependencies:
 - backend
 traits:
 - trait:
 apiVersion: keda.k8s.io/v1alpha1
 kind: ScaledObject
 spec:
 maxReplicaCount: 4
 triggers:
 - type: redis
 ...
 - trait:
 apiVersion: extended.oam.dev/v1
 kind: Route
 spec:
 traffic:
 ...
 scopes:
 - scope:
 apiVersion: core.oam.dev/v1alpha2
 kind: Network
 name: my-vpc-network-X
 - instanceName: backend
 componentName: redis
 scopes:
 - scope:
 apiVersion: core.oam.dev/v1alpha2
 kind: Network
 name: my-vpc-network-X

平台应用模型-OAM资源

EDAS Review

基础设施

K8s

云原生生态（CNCF）

云原生应用

4 6 7

2 3 51

EDAS
8

9
1 Kubectl plugins

2 Apiserver extension

3

4

5

6

7

Custom resources

Scheduler extension

Custom controller

Network plugins

Storage plugins

8

9

OAM & KubeVela

OAM表单

简单开放 标准
可扩展

轻量化

新的复杂度-开发模式
for {
 actualState := GetResourceActualState(rsvc)
 expectState := GetResourceExpectState(rsvc)
 if actualState == expectState {
 // do nothing
 } else {
 Reconcile(rsvc)
 }
}

• 声明式资源设计不合理；

• Expect state变化导致大范围Pod重启；

• Reconcile逻辑混乱不堪，不可测试；

• 外部交互模式不匹配；

• 声明式资源设计（要什么）
• Static
• Measurable
• Relevant
• Attainable
• Timebound

• 控制器设计（做什么）
• 基于“可重构”状态机，开放的世界
• 不要修改资源声明
• 事件驱动+主动轮询
• 重试 + 幂等
• 自愈

• e2e测试
• Ginkgo BDD
• Kind本地K8s集群

新的复杂度-最终一致性

status:
 …
 phase: succeed
 …

• 过期的状态
• 版本冲突

• 业务及时性

status:
 currentBatch: 1
 lastPhaseTransitionTime: "2020-10-29T13:43:48Z"
 observedVersion: "5"
 phase: succeed
 reason: ""
 revision: 5

使用version和observedVersion做收敛同步

metadata:
 …
 resourceVersion:"3442346549"
 ….

使用resourceVersion做乐观并发

 ownerReferences:
 - apiVersion: core.oam.dev/v1alpha2
 blockOwnerDeletion: true
 controller: true
 kind: ApplicationConfiguration
 name: oamhsf
 uid: 73eec338-c3c1-4936-bc5b-3c47f2eb63bc

使用ownerRef做事件触发

新的复杂度-可观测
应用为什么没有到终态？

• 关联资源太多

• 关联控制器太多

• 异步响应式
status:
 ŏ
 workloads:
 - componentName: oamhsf-group-1
 componentRevisionName: oamhsf-group-1-v5
 status: Ready
 traits:
 - status: success
 traitRef:
 apiVersion: edas.aliyun.oam.com/v1
 kind: Rollout
 name: oamhsf-group-1-trait-5c4fdd8f6c
 - status: success
 traitRef:
 apiVersion: edas.aliyun.oam.com/v1
 kind: ImageBuilder
 name: oamhsf-group-1-trait-5bc99b979f
 workloadRef:
 apiVersion: apps/v1
 kind: Deployment
 name: oamhsf-group-1-v5

应用的status里面关联所有资源

所有资源的status设计condition描述状态

status:
 conditions:
 - lastTransitionTime: "2020-11-17T18:33:02Z"
 reason: Successfully reconciled resource
 status: "True"
 type: Synced
 ŏ

应用关联的事件与日志

LAST SEEN TYPE REASON OBJECT MESSAGE
8m56s Normal RenderedComponents applicationconfiguration/oamacree Successfully rendered components
8m56s Normal AppliedComponents applicationconfiguration/oamacree Successfully applied components

新的复杂度-控制器运维

我们要管控大规模的集群，每个集群也会部署大量的控制器，控制器本身的运维成为问题

• 控制器管控平台
• 升级
• 回滚
• 灰度
• 重启

• 观测性
• Prometheus
• 统一日志收集
• 事件中心
• 告警

• 能力管控
• 版本管理
• 依赖满足
• 健康检查

云原生PaaS平台的发展趋势

基础设施

K8s

云原生生态（CNCF）

云原生应用

云原生PaaS平台
8

9

8

9

标准化平台应用模型与机制

标准化用户应用模型

• 开发者体验
• Serverless = FaaS + BaaS
• GitOps-自动化
• ServiceMesh-下一代分布式应用编程模式
• 应用运维可编程
• 多元化（云，工作负载，服务）

• 平台
• 可观测是重中之重
• 智能化-AIOps
• 一体化-扩展屏蔽基础设施
• 轻量化-下沉
• 自动化-端到端

Thanks

